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ABSTRACT

This research was concerned with the perception of

visual texture. A pattern is said to be textured when it

is composed of a large number of simple patterns. The ex-

tent to which the simple patterns differ from one another

and the manner in which they are spaced within the overall

pattern, determine the textured quality of the pattern.

In this study, textured patterns were generated by

controlling the statistics of a given local property of the

simple patterns. The "structuredness" of a textured pattern

was determined by the variance of the distribution of values

for the local property. The high variance patterns are

referred to as random and the low variance patterns are

referred to as structured.

Two local properties were used in this study: number

of dots and shape. In the first cases the simple patterns

were clusters of dots; in the second case, they were shapes

formed by two perpendicular line segments. A display con-

sisted of a pair of textured patterns each of which was a

i0 X i0 matrix of simple patterns. The visual angle sub-

tended by the displays_ and the duration of presentation

of the display, were manipulated as independent variables,
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as it was felt that these variables would have a differential

effect on the perception of the statistics of the textured

patterns for the two local properties.

The experiments consisted of two parts, a detection

study and a scaling study. Five subjects participated in

the detection study. The task was to detect similarities

and differences between the pairs of simultaneously pre-

sented textured patterns. Percent of correct detections

and latency of response were used as dependent measures.

The results of the detection study indicated that (a)

as the patterns increased in randomness, subjects took a

longer amount of time to respond; (b) accuracy of response

could not consistently be related to a scale of structured-

ness for different local properties; (c) response accuracy

and latency were not found to be linearly related (the lack

of linear relationship was attributed to variablility) ; (d)

subjects were more accurate detectors of similarities than

of differences in the statistics of the displays; (e) ac-

curacy of detection was better for shape than for dot den-

sity, and subjects were better at the detection task for the

dots at the small visual angle, whereas no difference in

accuracy was evidenced for shapes at the two visual angles;

(f) subjects were no more accurate at the detection task when

given longer amounts of time to view the displays; and (g)
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response latency was found to be sensitive only to duration

of stimulus presentation--the longer subjects were allowed

to view the displays, the longer they took to respond.

A second set of displays was generated at the larger

visual angle, in order that subjects could scale similarities

of the pairs of stimuli. In addition to the original

subjects, a second group of 17 subjects scaled the patterns

on a 1 to 7 scale of similarity. Solutions using the

classical (Torgerson, 1958) and nonmetric (Kruskal, 1964)

models, were computed. Four comparable dimensions emerged

in both solutions for the practiced group of subjects.

Comparable scales of structuredness, in terms of the dis-

tributions in the displays, were not observed in either

solution. Five dimensions emerged for the unpracticed

group of subjects with the classical scaling solution,

and four dimensions were derived from the nonmetric solution.

A monotonic ordering of the variances of the distributions,

with comparable scale values for the two local properties,

occurred with the nonmetric solution for the unpracticed

group of subjects.

These results are discussed with respect to the

psychological space of structuredness, and the consequences

of scaling perceptually different local properties in the

same multidimensional space.
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CHAPTER I

INTRODUCTION

Research in the area of pattern perception has, for

the most part, been concerned with simple rather than com-

plex patterns. Indeed, there has been a tendency to avoid

studying or even to deny the existence of complex pattern

perception. Gibson (1966) states, "No one, artist or

psychologist, has ever been quite sure what a line was, or

a boundary, margin, contour, texture, pattern or form."

Where problems of complex pattern perception have arisen,

psychologists have attempted to describe complex patterns

as aggregates of simple patterns. However, as the Gestalt

psychologists emphasized, ... the whole is greater than

the sum of its parts. Gibson has stated this thesis more

eloquently, " ... the structure of an optic array must be

distinguished from the causes of structure in the array."

(Gibson, 1966)

Problems concerning the perceptual qualities of com-

plex patterns can not simply be answered by extrapolating

from data gathered on simple pattern perception. As the

amount of detail in a complex pattern increases, the infor-

mation contained in the visual field increases. The

1
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variables that carry this information include more than just

"shape" or "form," they also involve such things as textures,

which contain forms and sub-forms down to the limits of

acuity.

Texture is considered to be one of the basic character-

istics of complex patterns (Gibson, 1950; 1966; Pickett,

1964; 1966; Rosenfeld, 1964). Visual texture has been

defined by Pickett (1964) as " ... an attribute of the vis-

ual field comprised of many small but discriminable spatial

variations in hue or brightness."

operationally defines texture as, "

Elsewhere, Pickett (1966)

... the product of the

operation of some simple pattern generator or mixture of

simple pattern generators."

This definition suggests that a texture is an aggregate

of sub-patterns formed by the repetition of some basic

pattern. The process by which the basic pattern repeats

itself may be either a deterministic or a stochastic one.

Deterministic textures are categorized by the pattern gen-

erator repeating the same cycle or element with a fixed

spacing over an interval. Stochastic textures are created

by randomly sampling a series of simple patterns from a

population containing similar patterns, and/or using a

random procedure for determining the spacing between cycles.

Studies using visual textures have emphasized only a
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limited number of parameters related to the elements or

patterns which are involved. Investigators have dealt

mostly with variables related to the "detail size" of the

textured stimulus (Rosenfeld, 1964). Studies conducted in

this area have often been oriented toward the construction

of automatic pattern recognition systems, and measures of

photographicgranularity.

Since visual texture is a complex pattern constructed

of simple patterns, and since the simple patterns contained

within the texture are similar to one another, complex

pattern perception may be studied as a function of the

spatial dependencies of the simple patterns to one another

and their statistical distributions. However, what effect

does the Choice of the simple patterns, which are the basis

for the complex pattern, have on the perceptual qualities

of the textured stimulus? The question arises as to the

relevant dimensions along which simple patterns, or elements

of simple patterns, may be specified, quantitatively and

psychologically. A taxonomy proposed for this purpose is

a set of locally defined properties which may be found

in the simple patterns. Such things as size, shape, angular-

ity, hue and brightness, are considered to be locally

defined properties. Local properties are specified in terms

of some small portion, or local neighborhood, of the pattern.

!
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When one speaks of spatial dependencies, one refers to the

interactions between local properties of local neighborhoods

to produce such things as gradients or different degrees of

a given local property for adjacent local neighborhoods.

The psychological literature contains no attempts

to study visual textures across local properties. Failure

to do research in this area can probably be attributed to

methodological difficulties rather than to a lack of inter-

est. It is extremely difficult to isolate one local property,

independent from all others, in a visual field. For example,

if one wishes to study size as a local property, control

of another local property, density, appears to be quite

difficult.

This study is concerned with investigating the percept-

ion of visual textures in Which the statistics of a single

local property are controlled. Of specific interest is the

problem of whether there are comparable scales of subject-

ive statistical estimation for different local properties.

An advantage of studying complex pattern perception

using a stochastically textured display based upon the

sampling of a single local property, is that the dimension-

ality of the simple patterns is minimized. Using the stochastic

texture as the stimulus display permits the pattern gen-

erator to sample different "amounts" of a local property,

e.g. different densities of elements, different numbers of
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elements, different shaped elements, etc. The probability

distribution of the various levels of the local property is

what determines the spatial dependencies between local

neighborhoods, and in turn influences the textural properties

of the display.

However, there are other factors besides the probability

distributions which may influence the textural properties

of the stimulus for a particular experimental task. For

example, if one wanted to investigate sensitivity to changes

along some dimension of a particular local property of the

stimulus, let us say changes in mean density per local

neighborhood, i.e. average number of elements per local

neighborhood, keeping mean density per display constant,

visual angle, duration of stimulus presentation, etc.,

might be additional variables which would interact with

observers' ability to detect differences between stimulus

pairs differing in the statistics of the local property

being studied. An investigation of the textural property

being studied should include these other variables mediating

response to the textural property. Indeed, if one ever

wished to speak of a textural property across, or for diff-

erent, local properties, some frame of reference or

performance baseline is needed. If one were able to equate

sensitivity of subjects to changes in the textural property

I
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in question for different local properties, by specifing

values for those variables which mediate or interact with

the response to the texture, one would then be able to equate

different populations of textures for different local proper-

ties. The advantage of such an approach is obvious. One

could then study the interaction of two or more local proper-

ties within the same stimulus display, once the local

properties have been equated with respect to these other

variables. In order to equate responses to different local

properties, one might maximize response efficiency for

each of the variables which may interact with the textural

property in question. Thus, one would choose that visual

angle, that exposure duration, etc., which result in the

lowest detection "thresholds" for differences between

stimuli.

i. Studies of Texture Perception

A review of the literature reveals that a relatively

small number of studies have been concerned with the per-

ception of visual texture. The studies to be described

here are those using stimulus displays, Which would convent-

ionally be called textures, to demonstrate that certain

types of information carried in textures are perceivable.
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Most of these studies have been concerned, to some degree, with

isolating which of several alternative geometrical prop-

erties in the texture actually controls the response. Only

a very limited number of studies have been able to demon-

strate phenomena of texture perception which are unpredictable

from performance at simple pattern perception tasks.

Some of these studies can serve to suggest what differ-

ent local properties can be independently varied within a

group of stimulus displays and how these local properties

interact with texture perception. The studies to be presented

are divided into two sections; (I) the judgement of number,

proportion and relative density of elements in spatial

arrays, and (2) the detection and discrimination of spatial

contingency in mosaics and dot patterns.

Studies on numerosity are relevant to problems of

texture perception because as the number of elements in

a stimulus display increases, the display may take on a

textured appearence. In a study concerned with ability to

estimate numerosity of elements (dots) in a display, Tares

(1941) found a discontinuity of response at about six to

eight elements. He found that when people were asked to

estimate the number of dots, ranging from a possible 2 to

180, tachistoscopically presented at 200 msec, both accuracy

and rated confidence of judgements were high for displays

I



containing up to six dots. As the number of dots increased,

subjects tended to overestimate the true number, with an

increase in variable error. Thus the psychological property

of numerousness tends to increase more rapidly than stimulus

number.

Kaufman et. al. (1949), taking a slightly different

view of the numerosity problem, measured reaction time (RT)

to samples of dots ranging from 1 to 210 elements presented

for 200 msec. Their accuracy data are similar to that of

Taves. Subjects were able to report numerousness for up

to six dots with low constant and variable error. When the

number of dots increased beyond six, both variable error

and RT increased sharply. An examination of the median RT

as a function of the number presented shows a discontinuity

above six dots. This suggests two seperate functions: one

holding up to six dots, and giving way quite abruptly to

a steeper one beyond six.

In an attempt to see how subjects would respond to

number, given as much time to view the stimulus as needed,

Jensen, Reese and Reese (1950) found that RT rises with

element number beyond eight elements at an aceelerated

rate. This suggests that subjects may be attempting to

count individual elemen_ It is suggested that since it

is more and more difficult to keep track of count as number
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increases, an accelerated function results. Thus, observers

will count if permitted to do so, but the data suggest little

utility from such a strategy. When brief exposure of the

display prohibits counting, an "immediate impression" of

numerosity is perhaps obtained, ei[her by some sequential

sampling process or "gross" processing of the entire infor-

mation content of the display.

Visual perception of proportion was studied by Philip

(1941), who had observers judge the proportion of dot

elements of one color that were mixed in with dot elements

of a different color. The display consisted of a 6X6

array of dots which was tachistoscopically presented. As

the proportion of dots of a color became predominant, sub-

jects tended to "fuse" elements of a similar color. Thus,

Philip concluded, subjects did respond to color mass,

suggesting an emergent textural property.

Taking a slightly different view of the problem,

Shufford and Wiesen (1959) studied ability to perceive

proportion of randomly interspersed i_ and 0k in 16X16

arrays. Investigating the effect of variation of exposure

time on precision of judgement of proportion of one element,

they found that correct performance improved as exposure

time was increased from 20 to 500 msec. The authors con-

cluded that subjects were probably sampling information

I
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from the matrix in clusters. The clustering process, they

assumed, was related to eye movements. No eye movement

recordings were reported, however.

Research on perceiving the mathematical or statistical

properties of stimulus displays had, until 1957, been lim-

ited to hand-drawn displays of what might be termed "medium"

complexity. At that time, Green (1957) reported a technique

for using computer graphics to build extremely complex

patterns of up to 16,000 individually discriminable elements.

In 1959, Green, Wolf and White reported a series of studies

using Green's technique to study detection of dot density

differences. Their display consisted of a 128X128 dot

matrix, photographed from the CRT output of a computer, in

Which bar patterns were formed by dot density differences.

The observer's task was to detect the presence of the bars

by identifyin_whether they were horizontally or vertically

oriented. The parameters studied were: (a) duration of

exposure; (b) average dot probability or overall density;

(c) visual angle subtended by the display; (d) matrix grain,

defined as dot size/dot separation; (e) location of contour

or phase of the bars; and (f) dynamic presentation (motion

pictures). To summarize briefly their results, they found

that: extreme magnification of the display (large visual

angle) did not significantly affect detection; increasing

I

I
I

I
I

I
I

I
I

I
I

I

I
I

I

I
I
I



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Ii

exposure time, up to a certain point, was effective in low-

ering the detection threshold, but exposures longer than

one second did not improve detectability; denser displays

were easier to detect than less dense ones; varying the

number of bars in the display led to best detection some-

where in the mid-range employed, suggesting an inverted U

shaped function relating redundancy of information to det-

ection.

It should be pointed out that although the authors

said _hey were studying detection as a function of dot

density differences, dot density was not being studied as

a local property. Using a signal detection model, Green,

et. al., called the bars the signal and the non-bar region,

noise. Relevant information within the display, from a

signal detection viewpoint, is considered to be contained

within a bar because the bar area is of greater mean den-

sity than the non-bar area. The local neighborhood can be

defined as adjacent bar and non-bar regions, where each

region contains different amounts of the local property of

element (dot) density. The detection task is then the

location of the boundary between local neighborhoods, which

is a density discrimination. If one were to look at any

one pair of Green's displays, where the same independent

variable was being manipulated, the pair would necessarily

I
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have different mean density values. Thus, a discrimination

could be made on a basis of brightness contrast. In order

to study dot density alone as a local property, any two

stimuli presented for comparison would have to be equated

for mean density, rather than having dot density and bright-

ness contrast related as in the above study.

The group of studies to be described next uses displays

which might be called extensions of the work of the Gestalt

psychologists on grouping of elements and its effects on

subjective appearence. These modern extensions of the

Gestalt demonstrations of grouping which illustrated the

organizational principles of proximity, good continuation,

similarity, etc., have replaced phenomenological descriptions

of these grouping phenomena with mathematical ones. Using

conditional probability distributions to specify the assign-

ment of binary events to a sequence of cells in a matrix-

display, groupings of black and white elements can be

produced.

Harcum (1958) developed a technique for manipulating

texture, keeping overall density and proportion constant,

by varying the dispersion of like-coded (black or white)

elements in a mosaic. He did this by constructing a matrix,

column by column, and controlling the probability (p) of

alternating sequence of cells in each column. Such a texture
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is refered to as a "Markov texture." As the transition

probability (p) from one type of event, e.g. black to

white, is decreased, a "clumpiness" or clustering of sim-

ilar events is observed.

board texture results.

As p increases, a random checker

With these stochastically generated

mosaic-like textures, Harcum carried out a series of studies

concerned with detection of targets created by "texture

contrast." His data are reported to contain a high degree

of error variance, but do show that a contrast variable can

mediate detection and recognition of a target.

A few years later, Julesz (1962) produced, by computer

techniques, Markov textures characterized by varying de-

grees of spatial contingency. Julesz asked the following

.question: "If two visual fields are presented simultaneous-

ly, in what properties must they differ in order to be

discriminated (with spontaneity)?" Conditional probability

distributions were used to produce (a) differences in gran-

ularity; (b) clusters formed by proximate points of uniform

brightness, and (c) breaking up of a structured pattern of

elements by periodic placement of random elements. Although

Julesz presented few quantitative results, several interest_

ing and "compelling" phenomena were observed and discussed

with regard to their application to the study of pattern

and form perception.

I
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In 196q, Pickett reported a psychophysical study using

textured displays. The display he used was similar to those

of Harcum and Julesz. Using a Markov texture with transition

probabilities ranging from .I0 to .90, Pickett had observers

respond as to the overall textured appearence, i.e. tendency

to repeat or alternate, of the display. Total information

content of the display was varied by using dot matrices of

different sizes. As the size of the matrix increased, the

total number of dots increased, thus increasing the infor-

mation content of the display. The dependent variables used

were response latency and precision of judgement. Pickett's

findings Show that constant and variable error for judging

transition p decreased as matrix size was increased, but

response latency increased as matrix size was also increased.

Thus, there was a trade-off of speed with accuracy as infor-

mation content or matrix size was increased. Pickett

interpreted his data using a sequential sampling model.

The trade-off of speed for accuracy (decrease in constant

and variable error) as matrix size is increased provides

an analogue to the reduction of the standard error of the

mean with an increase in sample size. However, Pickett

concludes that observers were using some other form of in-

formation, other than transition p, as the basis for response

to the display, otherwise, " ... no advantage could be

l
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gained from increased matrix size." This conclusion is a

consequence of the sampling model used to interpret his

data. Considering the transition p as the mean of a bin-

omial distribution, and the variable error the variance, in

order to come up with the statistics (constant and variable

error) which he found, the number of cells sampled would

be substantially less than the number of cells contained

in the matrices used. Whether this suggests that Pickett

was using an incorrect model for the interpretation of the

data, or that the model is correct but " ... subjects were

responding to some less efficient aspect of the display,

more of which could be sampled with an increase in matrix

size_ is not clear.

In a more recent study, Pickett (1965)has shown that

the shape of the textured display can affect both speed and

precision of texture perception. For matrices whose number

of rows were greater than columns, i.e. vertically oriented,

subjects made less efficient estimates of transition p than

for matrices which had fewer rows than columns. In both the

horizontally and vertically oriented displays, the transition

p's were generated by rows; that is, the pattern ran the

same way for both types of displays. Pickett assumes that

it is more efficient for the eye to scan the same area using

fewer long horizontal movements than more short ones. Since

I
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no eye movement data were collected, a scanning model has

to be viewed as speculative.

Perceptual grouping produced by changes in orien-

tation and shape has recently been studied by Beck (1966a,

1966b). Beck used a display consisting of patterns of

figures formed by two line segments of equal length and

perpendicular t° each °ther' e'g" b T+" The

pattern was made up of three sections, each containing a

distinct grouping of figures all at a given orientation.

The observers' task was to divide the pattern into two

regions, at the boundary where the '!most natural" break

occurred. The data show that when the figu_es in two

adjacent regions have different orientations, even if they

consist of the same figure, observers tend to choose this

as the boundary, in preference to the border between two

adjacent regions consisting of dissimilar characters at

the same orientation. Thus, when sub-groups of elements

are of similar shape but oriented differently, they are not

grouped together even though the individual, but isolated,

elements were judged to be more similar than were elements

having the same orientation but different shapes.

Studies using textured displays have shown_ that

observers can gain useful information from variations in

the mathematical and geometrical properties of a textured
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stimulus. The studies using the more complex stochastic

textures have, for the most part, shown observers to be

good estimators of the statistics presented to them in the

form of a textured display. The term "efficient" could be

used to describe the information handling capabilities of

the human observer. The trade-off of time and accuracy

found by Pickett and others suggests an interactive, but

nonlinear, effect between bits of information processed

per unit time and the precision of response. The nonlinear

effect may be related to the channel capacity of the data

processor. Perhaps the point at which the utility of a

sequential sampling system drops off and subjects begin

to respond to that "less efficient aspect of the display,

more of which can be 'sampled' with an increase in infor-

mation," (Pickett, 196@) is related to subjects' limit for

processing information in this way. Like the earlier work

on estimation of numerosity of elements, perhaps a two

stage perceptual model is relevant. That is, up to a cer-

tain information level subjects may be able to sample or

count, but beyond this level some "vagu_e impression" of

the stimulus is processed by the observer in a parallel,

non-sequential fashion. In any case, this research sug-

gests different models for speculation as to how obser_rs

may process information contained in textures.

I
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It is interesting to note that many of the displays

used to study texture perception have consisted of sets of

conditionally related binary events. That is, an element

was either "black" or "white," a cell was either empty or

contained a discrete event. If one is interested in the

textural properties produced by variations in a geometrical

or mathematical property along some dimension, it would be

useful to vary the degree of presence or absence of the

mathematical or geometrical property within a given display.

Thus, if one suspects that the density or shape dimension

can be manipulated to produce textural properties_ systematic

differences in density among areas within the display, i.e.

local neighborhoods, could be varied, and the observer's

sensitivity to these variations would then provide data

concerning the perception of density or shape as a local

property. Studying local properties in this way would make

it possible to compare responses to sets of patterns having

different local properties, but similar distributions of

values of these local properties.

2. Objectives of the Present Study

The purpose of the present study is to investigate

the sensitivity of subjects to differences in the statist-
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ics of the values of local properties of textured visual

stimuli. The local properties chosen for study were select-

ed using the following criterion: can the local property

of interest be studied independently of all other local

properties present in the visual field? Independence is

used here in the sense that the other local properties,

though they may be present in the display, are (a) incidental

to the local property of interest (in the sense that all

geometrical figures which have a shape, also have size) and,

(b) may be controlled by holding them constant or randomiz-

ing them.

The stimulus correlates of the local properties Which

can be used to investigate texture perception include:

(a) brightness, hue and saturation

(b) density of dots or similar small elements per

unit area

(c) shape (abstract or familiar); in particular,

i) orientation

2) size (area; or in one dimension, length

or distance).

How one specifies the size of a local neighborhood

will determine the relative independence of these properties

in a display. For example, if one wishes to design a display

with density as a local property, it is important that the

I
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perceptual group of elements which are clustered together

to form a subset of a particular density value, be distinct

from other groups of elements. Thus, in a given display,

distinct groupings of elements will be discriminable as

having different densities. The areas enclosed by the

groupings of elements should be of equal size, and spaced

at a distance apart from adjacent groupings to insure the

discrimina_lity of the different density sets. These areas

will be refered to as local neighborhoods. The optimum size

and spacing of local neighborhoods depend upon the local

property of interest.

To illustrate the notion of controlling all other local

properties in the display, while studying the effects of

systematic variations in only one, let us consider the local

property of element density, using dots as elements. What

happens to the other local properties listed above as dot

density varies? If the individual dots are discriminable,

the number of dots in a group defines numerosity (density);

if they are not discriminable, it defines a grayshade in

the manner of a halftone. Discriminability will depend

upon the visual angle subtended by the local neighborhood in

which the dots are grouped. Whether we speak of density as

a grayshade or as numerosity, then, depends upon visual

angle. Differences in density between groupings of dots
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defines a density continuum. As the number of dots in a
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local neighborhood increases, so does density, dot size

and local neighborhood size being kept constant. The local

neighborhoods must be spaced so that the grouping within

each local neighborhood is seen as a perceptual unit (the

proximity principle). Thus, dots should interact within

groups more than they do among groups. If black dots on

I

I

a white background are used, hue is irrelevant, and there are

only two brightnesses, "black" and "white." The shape of

the dot grouping within a local neighborhood will depend

!

I

upon how the dots are placed within the neighborhood. Random

assignment of the dots within the local neighborhood results

in an irregular, or random, shape. The same applies to the

I

I

area or size of the dot cluster; it becomes a random var-

iable when dots are placed'at random within the local

neighborhood. Since the groupings have irregular shapes,

I

I

orientation is also random. In this manner, one local

property, dot density, may be systematically controlled

while other local properties remain randomized.

I
I

I

I

There are certain other factors which might different-

ially influence observers' estimates of the statistics of

different local properties. For example, shrinking visual

angle destroys dot density (numerosity) and shape, though

it should have no effect on hue or luminance. There are

!
h
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no local properties of shape, size or orientation if no

elements are resolvable within local neighborhoods. A-

nother variable which may affect the estimation of the

statistics for different local properties is viewing time.

If subjects' performance at estimation of the sta-

tistics of the elements remain unaffected by changes in

the local property and by variables such as visual angle

and duration of stimulus presentation then it would be

reasonable to conclude that the subjects are responding

to the statistics contained within the local neighborhoods,

rather than to the local properties themselves. Investi-

gation of this question is an important part of this study.

To summarize: the specific purpose of this study is

to determine if the detection of differences in the statis-

tics of a local property, differs for different local

properties. Also of interest are the effects of manipu-

lating the visual angle subtended by the local neighborhood,

and the amount of time given the observer to view the

display, as these variables may show differential effects.

It is predicted that:

(a) At small visual angle, the local property of

dot density may be perceived as a grayshade

rather than as dot numerosity even though

the individual dots are still visible. Such
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an effect would be inferred by differential

accuracy of detection of the distributions of

density at different visual angles. No such

effect is predicted for the local property of

"shape".

(b) There will be a longer response latency for

displays in which the local elements are more

complex. Increasing the duration of exposure

of the stimulus will result in greater accuracy

of response.

A second purpose of this study is to combine two local

properties in a single display and map stimuli, differing

in the statistics of local properties, into a multidimen-

sional space. In particular, can subjects give comparable

scale values to textured displays of different local proper-

ties with the same statistics?



CHAPTERII

METHODAND PROCEDURE

The experimental work consisted of two parts. The

first was concerned with the detection of differences in

the distribution of values of a single local property. Two

different local properties were used. The information in

the textured displays was presented to observers using

different exposure times and visual angles. The second

part of the study was an investigation of how observers

scale differences between textured displays where local

properties are multidimemsional, but where the response is

made to differences in the statistical distributions of the

contents of local neighborhoods.

One of the local properties used was density of elements

within a local neighborhood. The element used was a dot.

Dots were randomly placed within a specified area defined

as a local neighborhood. The display consisted of a pair

of patterns, each of them in the form of a matrix having

ten rows and ten columns. Each pattern had approximately

the same number of dots, thus keeping mean density constant

across displays. The following is a description of the

patterns.

Let the densities which can occur in a local neighbor-

hood be s I, ..., sk. Let Pi be the probability that

24
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I density s occurs. Let s be the mean of s_, ..., s_.
l m

We

i restrict the p's as follows: let all the Pi'S except Pm

be equal, and let Pm _---Pi (i_m). This restriction

I fixes the mean density value of the display

!

i

at approximately s . It also implies that each Pim

(i=i,2, ... ,k; i_m) must be equal to (l-Pm)/(k-l).

Changes in values for Pm will result in changes in the

i

i

even-ordered moments of the distribution of densities. In

particular, as Pm increases, the variance of the distribution

decreases and kurtosis, or degree of peakedness, increases.

!
I

I
I

The density values (s.) chosen for the experiments
1

were 3, 6, 9, 12, and 15 dots. The mean (s m) was 9 dots,

and the probability (pm) was taken to be either .20, .40,

.60 or .80 When Pm is .20, all of the dot groupings

occur approximately equally often; as Pm increases, groups

of 9 dots occur with increasing frequency, with a corres-

!

!

ponding decrease in frequencies for the other dot groupings.

Low variance patterns (high value for pm ) are refered to

as "structured" displays; and high variance patterns (all

!

i

p values equal) are refered to as _'random" displays.

A second local property, element Shape, was manipulated

similarly. A series of closely spaced dots was used to

!

!

define an element. The shapes these dots assumed were

similar to those used by Beck (1966). Two groups of dots

!
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lying along lines perpendicular to one another were used to

form the element. The differences between shapes were

introduced by the relative placement of the two lines of

dots. The lines were always normal to each other and to

the (visual) line of regard; but where the lines cross or

intersect, determines shape. Care was taken to have the

number, length and spacing of the dots within a line, the

same. The overall mean density for the element "shape"

displays was equal to that of the dot density displays so

that the comparison of the statistical distributions across

local properties would not be confounded with a brightness

contrast phenomenon.

A set of five shapes was used:

o.••• •.•o• •

• o •

• eeoc • o ••••e

As a control, two series of displays were constructed,

in each of which a different shape was chosen to be the

most frequently occurring. In one series of patterns, a

greater proportion of the + figure occurred _han any other

figure; in the second series, a greater proportion of the

"P figure occurred• The values of Pm used were the same as

in the case of the random dot patterns•

The choice of the visual angle to be subtended by the
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local neighborhood was influenced by anumber of factors.

The smallest visual angle of interest would be that which
t

just allows observers to fuse the dots into a halftone.

The choice of the larger visual angle(s) to be used is noL

as clear cut. Does one want to restrict the stimulus to

that part of the eye where the resolution of the stimulus

is relatively homogeneous for dots in the center as well

as in the periphery of the display, or Should the stimulus

be permitted to extend off the fovea? The former criterion

is quite restrictive, since a relatively large number of

local neighborhoods is needed in the display, if one is to

manipulate the statistical distribution. However, the

problem of the resolution of the elements across the visual

field should interact with duration of exposure of the

stimulus. For longer exposure times, the eye can pre-

sumably scan the display, thus fixing both the center and

peripheral portions of the stimulus on the central fovea,

though at different times. For several reasons it was

decided to Choose a larger visual angle which would cover

an area larger than the fovea. To avoid relative acuity

problems within the same display, exposure times were

Chosen which were long enough to permit the fixing of both

peripheral and central portions of the stimulus on the

center of the fovea.

I
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Two display sizes were used. The process by which

the patterns were photographically reduced permitted a

minimum separation of .25mm between dots. This, and the

apparatus used for presentation of the displays, resulted

in a minimum angular separation between dots of 1.5 min

arc.

For displays where dot density was the local property

being manipulated, 1.5 min arc was the smallest* separation

between dots for the condition with a smaller visual angle,

and 2.7 min arc was the smallest separation between dots

for the "large" visual angle condition. The size of the

dots was approximately 2/3 the distance between dots for

both conditions. For the larger visual angle, the size of

the local neighborhood was 3 2 min arc, in both the horiz-

ontal and vertical dimensions, with the entire pattern

subtending 5.7 degrees. For the smaller visual angle,

the size of the local neighborhood was approximately 20 min

arc, with the entire pattern subtending 3.6 degrees. Also,

the distance between local neighborhoods was approximately

one half the size of the local neighborhood.

* The separation between dots is, in part0 a random variable,
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since the assignment of the dots within a local neighborhood

is generated by a random process. The "smallest" distance

is determined by the distance between adjacent characters

on an IBM 1403 chain printer.
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When shape was the local property, the separation be-

tween the dots forming the shapes was equal to the smallest

separation between dots as described in the random dot den-

sity displays, 1.5 min arc at small visual angle and 2.7

min arc at large visual angle. The size and spacing of the

local neighborhoods were the same for both local properties_

The displays were binocularly presented. The exposure

times used were i00 msec, one sec, and a self paced condition,

where observers could view the display for as long as they

wished.

i. Computer Generation of Stimulus Displays

The displays were photographic reductions of computer

generated output from an IBM 7094-1401 system. A random

number generator was used to assign values, i.e. densities

or shapes, to the local neighborhoods. The assignment of

a particular density value or shape to a local neighborhood

was governed by the probability distribution over the set

of densities or shapes. Sample distributions were tested

for departure from expected values using a Chi Square test.

Displays whose statistics differed by _ greater than .01

from expected values were discarded. For the dot density

displays, placement of the dots within local neighborhoods.

I



was accomplished by regarding a local neighborhood as an

8X8 matrix and randomly selecting points of this matrix

for the placement of dots. In the element shape displays,

the Shapes were centered in the local neighborhoods.

The stimulus displays, consisting of black dots on a

white background, were photographed and reduced to

appropriate sizes. The reduced patterns were then photo-

copied and mounted on 4X6 neutral gray cards. Pairs of

patterns were placed next to one another horizontally,

and spaced a distance of approximately two local neighbor-

hoods apart, on opposite sides of the center of the card.

The assignment of a pattern to a given half of a card was

randomly determined.

2. Apparatus

A Harvard tachistoscope

i954; p.

subject.

(Woodworth and Schlosberg,

92) was used to present the displays to the

The luminances of the adapting and stimulus

fields were matched to within .05 log units. The luminance

of the fields was 8.6 millilamberts. The subject's

viewing field was approximately 16 degrees in visual angle.

Presentation of the target was under the control of the

subject. Upon receiving a "ready" signal, the subject
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depressed a button which activated a one second delay,

which was followed by the onset of the stimulus. With the

onset of the stimulus, the fixation point disappeared, and

a clock was started. The duration of the presentation of

the stimulus was determined either by the experimenter,

using a timing device, or by the subject. Response keys

were provided for the subject. Pressing either response

key, during the paced condition, stopped the clock and turned

off the stimulus. When the experimenter controlled the

duration of exposure of the stimulus, the effect of the

subject pressing a response key was to stop the clock. A

chin rest and viewing hood were also provided. The room

used for the study was windowless, well ventilated, and

dimly lit.

3. Procedure: Det-_ction Study

Measuring sensitivity of observers to differences in

the statistics of a local property was accomplished by

having them judge pairs of displays. Pairs of stimuli

which were the same statistically, but not geometrically,

i.e. which had different arrangements of the dots within

local neighborhoods, as well as pairs which consisted of

two identical patterns, were included as part of the set

I



of displays. For a given local property, six stimulus

pairs were different statistically, four had similar stat-

istical properties, and eight had

well as statistical, properties.

similar geometrical, as

Table 1 shows the quant-

itative characteristics of the stimulus pairs.

Table 1

Statistical Properties of Stimulus Pairs
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Dissimilar

Pairs

Similar

Pairs

Var.
Var. PmPm

.80 7.50 .60 9.00

.80 7.50 .40 13.50

.80 7.50 .20 18.00

.60 9.00 .40 13.50

.60 9.00 .20 18.00

.40 13.50 .20 18.00

.80a 7.50 .80b 7.50

.60a 9.00 .60b 9.00

.40a 13.50 .40b 13.50

.20a 18.00 .20b 18.00

.80a .80a

.80b .80b

.60a .60a

.60b .60b

.40a .40a

.40b .40b

.20a .20a

.20b .20b

I
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I

I
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Note: the a and b refer to different samples of statistically

identical stimuli.



I

I
I

I
I

I

I
I

I
I

I
!
I

I

I
I

I

I
I

a.

bo

33

Judgements were in terms of similar - dissimilar response

to these stimulus pairs. The dependent measures consisted

of (a) response latency and (b) proportion of correct

responses. A correct response is defined as the observer

reporting "same," when the statistical properties of the

two displays being compared are similar, or the observer

reporting "different," when the statistical properties of

the two displays are different.

Subjects For the detection study, five female undergrad-

uate students were used and paid for their participation.

Each subject's visual acuity was tested, for each eye sep-

arately, on eight meridian, using a Landolt C with a 1.2

min arc gap. The targets were presented for i00 msec.

The subjects used were able to locate the gap with 75%

accuracy, at each meridian°

Instructions to Subjects Subjects were instructed as to

the purpose of the experiment and the method of responding.

Sample patterns were shown to the subject and explanations

provided as to what constitutes a "statistical" difference

between patterns. The instructions to subjects are given

in Appendix I.

Prior to each experimental session, subjects were
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shown a set of "practice" stimuli. These consisted of 20

sample patterns, representing both visual angles. An

experimental session consisted of viewing 108 displays in

a random ordering, including all local properties at both

visual angles for one exposure time. After each response,

subjects were given feedback as to whether the stimuli in

the pair were similar or dissimilar. The session was

broken up into three 15 minute intervals, with a five minute

rest between intervals. Each subject participated for a

total of 30 hours, distributed over a seven week period.

4. Procedure: Multidimensional Scaling Study

On the basis of the information obtained in th_ _e-

tection study, a visual angle and exposure time were chosen

which should maximize the differences between the two local

properties used. The large visual angle was chosen on the

basis of the significant interaction between local propertie_

and visual angles (see Chapter III). The choice of the

exposure duration was not as clear cut. Since no signif-

icant difference was found, for the different exposure

durations, in accuracy of detection of differences of the

statistics of local properties, it was decided to choose

a duration long enough for subjects to scan the display,
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if they wished. A duration of 1.5 seconds was selected for

this purpose. This value is slightly longer than the time

that practiced subjects took when they could pace themselves.

The stimuli used for the scaling study were all poss-

ible pairs of a set comprised of four random dot density

patterns having Pm'S of .80, .60, .40 and .20, and four

patterns containing figures, with the + figure at the mean

of the distribution, with valuss of Pm the same as those

for the dot patterns. A pair of patterns could consist of

dots with dots, figures with figures, or dots with figures.

The number of pairs which can be chosen from the eight

2 C8 = 28, where the variances of the two membersstimuli is

of the pair differed. An additional eight pair of stimuli

whose statistics did not differ were also used.

These patterns were then placed on cards, spacing the

patterns in the same manner as those used in the detection

study.The assignment of a pattern to a given half of the card

was randomly determined, with the restriction that an equal

number of dot patterns appeared on both halves of the cards.

The same apparatus and experimental room which were used

for the detection study were also used in this study.

Subjects The same subjects who participated in the

detection study were also used for the scaling study. In

I
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addition, _7 "unpracticed" subjects, ten male and seven

female graduate students and University staff, were also

selected to participate in the scaling study. Acuity tests

showed these subjects to be emmetropic.

Instructions to Subjects Subjects were instructed as to

the purpose of the experiment, the functioning of the appar-

atus and the experimental task. Sample patterns were shown

to the subjects and an explanation provided as to what

constitutes a "statistical" difference between patterns.

(See Appendix I for the actual instructions given to the

subjects.)

Prior to an experimental session, subjects were

shown a group of 16 stimulus pairs, eight similar and

eight dissimilar. They were asked to rate the similarity

of the distributions of elements in each pattern on

a 1 - to - 7 scale, where 7 was "most similar" and 1

was "least similar." Feedback was provided as to whether

the stimuli had similar or dissimilar statistics.

to help them anchor their scale.

session lasted about 45 minutes,

constituting the practice session.

An experimental

the first 15 minutes

Subjects were not

given feedback during the data collection.

The subjects who had participated in the detection
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study repeated this experiment a total of five times each

(with the exception of one subject, who repeated the exper-

iment six times). This was done in order that the total

number of observations for this group would be large enough

to permit a separate analysis of the scaling data from the

unpracticed group of subjects.



CHAPTERIII

RESULTS

1. Detection Study

All patterns were presented to each of the five exp-

erimental subjects over six test periods. An inspection

of the data, however, revealed that the first two test

periods had a high degree of variability for most subjects.

These test periods, therefore, were not included in the

final analysis. Thus, four replications, for five subjects,

constituted the basic data.

Percent of correct responses and square root of response

latency were calculated for each local property, duration

andvisual angle condition. Pairs of stimuli which were

geometrically similar, as well as being statistically sim-

ilar, i.e. each member of the pair of patterns had the same

configurations in corresponding local neighborhoods, were

treated seperately from the statistically similar pairs.

The data suggested that subjects responded somewhat differ-

ently to geometrically similar patterns, as evidenced by

accuracy scores of 90_ or better.

The dependent variables are plotted in Figures 1 - 2

as functions of the variance(s) characterizing the stimulus

38
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pairs. As the degree of structure in a statistically sim-

ilar stimulus pair increased, so did accuracy of detection.

The percent correct data, combined across all conditions,

were ordered monotonically as a function of degree of

structure, with the exception of the display having the

greatest degree of structure. Whether this exception is a

result of sampling error, or it suggests that behavior is

not monotonically related to degree of structure in the dis-

plays, is difficult to determine from the data.

A scale representing responses to statistically dis-

_imilar stimulus pairs was more difficult to establish.

The response accuracy data for these six stimulus pairs

were ordered by the smaller variance of the pair, and for

a pair having a given smaller variance, by the larger var-

iance. This resulted in a scale resembling that obtained

with the data for statistically similar stimulus pairs,

resulting in a function showing that increase in response

accuracy is related to an increase in the structure of the

display. However, when the data for stimulus pairs having

both similar and different statistical distributions are

separated in terms of the different independent variables

over which the data were combined (see Appendix II), the

functions relating accuracy and structure tend to become

somewhat irregular.

I
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Percent Correct Detections: Combined Data

II
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' ' t t i '_ . _ _ ' | ' '

.8 .6 .4 .2 .8 .8 .8 .6 .6 .4

Pm .8 .6 .4 .2 .2 .4 .6 .2 .4 .2

Stimulus Pair

Analyses of variance between means representing averaged

percent correct responses to statistically similar and to

statistically dissimilar stimulus pairs, showed the means

to be significantly different at p< .05 and p_.01, respect-

ively. The linear and quadratic trends were significant

(p <.05), and the cubic trend approached significance

(p <.i0), for statistically similar pairs. The linear,

quadratic and cubic trends were significant (p _.01) for

statistically dissimilar pairs.
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The dependent variable of response latency was trans-

formed by taking its square root to effectively remove a

positive skew evidenced in the data. The results are report-

ed in terms of the transformed measure. The relationship

of response latency to the degree of structure of the display

indicated that an increase in overall response latency is

associated with a decrease in the structure. The relation-

ship obtained was monotonic for both the pairs of displays

having similar distributions and for the pairs having differ-

ent distributions. Ordering the pairs having different

distributions on a scale of increasing response latency

resulted in a scale of structuredness similar to the one

obtained from the accuracy data. Unlike the response acc-

uracy data, the shapes of the latency functions tended to

remain stable When the data were seperated in terms of the

different independent variables over which they had been

combined. However, a large amount of variability was evi-

denced.

The range of the accuracy data was from 5 to i00_ for

some of the data points. The latency ranged from .56 to

1.82 seconds. The implications of this variability became

clearer When the overall relationship of accuracy and re-

sponse latency was investigated. Figure 3 shows percent

of correct detections as a function of response latency.
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Figure 2

Response Latency: Combined Dat____aa

.8 .6 .4 .2 .8 .8 .8 .6 .6 .4

Pm .8 .6 .4 .2 .2 .4 .6 .2 .4 .2

Stimulus Pair

The ordinate represents the square root of RT in i/i00 sec.

An analysis of variance between means representing averaged

latencies tc stimulus pairs having similar distributions show-

ed these means to be significantly different (p < .05). The

linear trend was significant (p_.01). Although the differ-

ences between means for statistically dissimilar pairs was

not significant (p _.25 >.i0), the linear trend approached

significance (p_.10 >.05).
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For both measures, data were averaged over local properties,

duration and visual angle, for each of the stimulus pairs.

At first glance, it seemed that there Was a high nega[ive

correlation between accuracy and latency for both stat-

istically similar and for statistically different stimulus

pairs. However, the Pearson product-moment correlations

were not significantly different from zero.

Several additional methods were used to assess the

strength of the relationship between accuracy and latency.

A total of 900 data points were obtained by taking the

proportion of correct responses and latencies, for each

of the stimulus pairs and each independent variable condit-

ion for each subject seperately. The value of this

correlation was .098. Averaging these data across subjects,

and recalculating _ for the 180 data points yielded a

correlation of -.03. The fact that the response patterns

to stimulus pairs which had different variance appeared to

be somewhat different from those pairs having similar var-

iances, suggested doing separate analyses for each of these

sets. In the case of statistically similar pairs, n_e

correlation between accuracy and latency was -.15. The

value of _, however, was not significantly different from

zero. The correlation for dissimilar pairs was .04. Scatter

plots, shown in Figures 4 and 5, show that the lack of

!
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Figure 4

Scatter Plot

Accuracy as a Function of

Pairs
Latency: Similar Stimulus
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Figure 5

Scatter Plot

Accuracy as a Function of Latency: Different

Stimulus Pairs
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linear relationship is attributable to variability rather

47

than to a curvilinear relationship in the data. Although

the means of the combined data points suggest, at first

glance, that subjects are efficient detectors of differences

i

!

and similarities between variances of local properties

(efficient in the sense that high accuracy is associated

with low decision time), this conclusion is not warranted;

I
I

I
I

the means are not good estimates since the variability of

the data about these means was unreliable.

Effects o__f Independent Variables o__nnDetection. To ascertain

the relationship among the various independent variables

manipulated in this study, a four-way Treatments X Subjects

!

I

Analysis of Variance was performed for each dependent

measure. The data for each subjects were averaged across

replications for these analyses. A measure of accuracy

I

I

of detection of similarities was established by averaging

the data for correct responses made to all pairs of stimuli

having statistically similar distributions, while accuracy

!

!

of detection of differences was determined by averaging the

data for correct responses made to pairs of stimuli having

dissimilar distributions. The response latency data were

!

!

averaged in a like manner. A summary of the results of

the Analyses of Variance appear in Table 2.

!



Table 2
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!
Summary Table for Analyses of Variance

Accuracy Latency

Source df MS F MS F

i. 905

iI.351_

1.837

2. 140

2.668

1.055

1.654

E1

A (Subjects) 4 .109 345. 902

B (Local Properties) 2 .095 4.539* 2.350

C (Durations) 2 .039 3.458 181.308

D (visual Angles) 1 .031 1.821 .139

E (Same/Different) 1 2. 302 7. 760* .000

AB 8 .021 1.234

AC 8 .011 15. 973

AD 4 .014 .309

AE 4 .297 .502

BC 4 .008 1.001 .248

BD 2 .058 5.407* .238

BE 2 .041 1.106 .588

CD 2 .016 2.447 .316

CE 2 .17] 2.437 .070

DE 1 .092 2.923 .563

ABC 16 .008 .385

ABD 8 .011 .129

ABE 8 .037 .275

ACD 8 .006 .686

ACE 8 .070 .112

ADE 4 .040 .211

BCD 4 .011 1.830 .316

BCE 4 .033 1.134 .422

BDE 2 .022 41 .564

CDE 2 .006 <i .025

ABCD 16 .006 .299

ABCE 16 .029 .255

ABDE 8 .024 .643

ACDE 8 .009 .179

BCDE 4 .003 _i .242

RESIDUAL 16 .006 .279

TOTAL 179

!

!

!
I

!

!

I

!

i

I

I

I

i

!
* probability is less than or equal to .05

probability is less than .01



I
I

I

I

I

I
I

I

I
I
I

i

I

I

l
I

I

I

49

The statistical tests of the accuracy data revealed

a significant main effect for local properties ( p less

than .05), similarity and dissimilarity of stimuli (p less

than .05), and a significant interaction between local

properties and visual angles (p less than .05). The pooled

sample covariance matrix for local properties was tested

for homogeneity of covariance, using Box's (1954) epsilon

statistic as an index of heterogeneity. The resulting

epsilon statistic was .86. The degrees of freedom for

the F (local properties @ 2, 8) were then adjusted, in

order that a central F distribution might be approximated

(Box, 1954; Geisser and Greenhouse, 1959; Stoloff, 1966).

The exact probability for the adjusted F (2, 7) was .054

Which the present author interpre_ as indicating a

significant difference. The degrees of freedom for the

interaction involving local properties and visual angles

were adjusted in a like manner. The resulting F (2, 7)

was significant at _ less than .05. A comparison between

means for the significant local property effect was performed,

using Scheffe's (1953) test for multiple comparisons. Table

3 is a summary of results for these comparisons.

The choice of a significance level for testing the F

ratios was influenced by the conservative nature of the

test (Scheffe, 1953; Winer, 1962, Edwards, 1960). Scheffe

I



Table 3

Scheffe's Test for Multiple Comparisons

5O

Comparisons Between Means of Local Properties

(Accuracy Data)

comparison F R

Dots vs. "+"

Dots vs. "T"

"+" vs. "T"

8.733 ) .05 ( .i0

3.971 7.10

41

Dots vs. "+" and "T"

"+" vs. dots and "T"

"T" vs. dots and "+"

8.161 _ .05 6.10

5. ii0 _. i0

3.540 7.10

I

I

I

I

Comparisons Between Means of Durations (Latency data)

Comparison F R

1 sec vs. i00 msec

1 sec vs. paced

i00 msec vs. paced

8.616 _ .05 _ .i0

3.178 > .i0

22.259 C .01

1 sec vs. i00 msec

and paced

i00 msec vs. 1 sec

and paced

Paced vs. 1 sec

and i00 msec

19.524

14.086

I

I

I

i

I

I

I

1
I

I

I

I
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suggests that one might consider taking alpha equal to .i0

rather than .05, as the significance level. Following

this suggestion, a significant difference was found between

dot density and the combined effects of the two shapes

patterns, and between dot density and the "+" shape. The

fact that the two different sets of patterns containing

different shapes as the "mean" shape do not differ signif-

icantly is not surprising, as these were really the same

local property, but with different shapes occurring most

frequently.

The interaction between local properties and visual

angles is shown in Figure 6 . From these data, it would

appear that the percent correct detections of the dot and

shape patterns showed similar performance at small visual

angle but not at large visual angle, though the overall

effect of changes in visual angle were not significant.

The hypothesis that subjects were able to fuse the dots in

local neighborhoods into a halftone, at small visual angle,

would appear to be plausible, since subjects were more

accurate in detecting differences and similarities between

dot density patterns at small visual angle. The significant

interaction between local properties and visual angles is

probablt due to differences between local properties at

large visual angle.

I
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The significant main effect between the accuracies of

response to stimulus pairs having similar vs. dissimilar

statistical properties, indicated that observers do a better

job at detecting similarities rather than differences.

The summary table for the Analysis of Variance of the

response latencies is presented in Table 2. The only sig-

nificant F found was for the duration of stimulus presentation;

probability less than .01. Applying the correction proced-

ures for heterogeneous covariances between the different

levels of the main effect resulted in an epsilon statistic

Of .98. This indicated a relatively high d_gree of homogen-

eity. The corrected F remained significant at _ less

than .01.

Scheffe's test for multiple comparisons was performed

for the various combinations of treatment levels. The

results appear in Table 3. The significance level chosen

was again alpha equal to .i0. The results indicate that

observers take longer to respond when given a longer time

to view the stimulus; and when they are allowed to pace

themselves, they take significantly longer to respond

than when presentation time is controlled by the experiment-

er. Using latency as a dependent variable was effective

only in that it was able to measure changes in a procedural
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variable, stimulus exposure time, rather than differences

in the properties of the stimuli themselves.

It will be recalled that no significant effect was

found for duration of exposure when accuracy of response

was the dependent measure. This would indicate that although

observers do take longer to respond, they are not necessarily

more accurate in their responses. This would, of course,

be expected from the low correlation between accuracy and

response latency.

2. Multidimensional Scaling Study

Two subject groups were used in the scaling study.

The five "practiced" subjects who participated in the de-

tection study also participated in the scaling of the

patterns. Four of the subjects repeated the scaling five

times each, while a fifth repeated the scaling six times.

Practiced subjects repeated the study more than once, in

order to obtain a large enough set of observations to

achieve a solution for the scaling models used.

A second sample, consisting of i0 males and seven

females (graduate students and University staff) also par-

Each of these 17 subjects

The data from each subject

ticipated in the scaling study.

scaled the patterns only once.

group were analyzed separately.

I
I

I
I
I

I

I
I
I

I

I
I
I
I
I
I

I

I
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I
Two multidimensional scaling methods were used to an-

I

I

alyze the data. The first scaling procedure, refered to as

the "classical method," is described in Torgerson (1958).

This method consists of obtaining a matrix whose entries

I

i

I

I

are relative inter-stimulus distances having an arbitrary

origin, and converting these to absolute distances, which

have as their origin the centroid of the configuration em-

bedded in a k-dimensional Euclidean space. Torgerson's

method makes use of a basic theorm in distance geometry

stated by Young and Householder in 1938. This states that

I
I

I

a necessary and sufficient condition that a collection of

distances between n points, dij, be embeddable in a Euclidean

space of k dimensions, i.e. they equal the distances between

corresponding points, is that the matrix, B, of elements,

i bij, be of rank k, where

I = (d ki kj
bi j ½ 2 + d 2

-%

- dLij), i, j # k.

I B is factored to obtain a matrix, A, of rank, k,

! where B is positive semi-definite and

i B = A A'

I

I

Matrix A is an m X k rectangular matrix (k_ m-l, where

is the number of stimuli) whose elements are projections

I



s6 I

I
of the points on _ orthogonal axes with the origin at the

th I
of the _ pointsp where _ is arbitrary. It is desirable

to place the origin at the centroid because distortions, I

which may result with data which are not error free, will

then tend to cancel one another. The matrix, B*, of scalar I

products from an origin at the centroid of all points, is i

defined by

Ib* : ½ (_ _ d2 1 2 1 2• d km

i 3 jk + _ d ik- n2 I
_ d 2 )

,. o

I
Experimental data provide only an estimate of d.. and

13

if the sample variance is large enough, B* will not be of

rank k and the scaling model may be inappropriate. Absolute

distances, which determine the elements of B*, are obtained

by estimating a constant, _, which is added to the observed

relative inter-point distances. The problem is to choose

that value of c which minimizes the dimensionality of the

real Euclidean space.

A procedure for multidimensional Scaling developed by

Shepard and Kruska_ referred to as the "''nonmetric solution,"

considers the multidimensional scaling problem as one of

obtaining a monotone relationship between observed data,
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in the form of experimental similarities or dissimilarities,

and the distances in the configuration (Kruskal, 1964a;

Shepard, 1962). This avoids the distributional assumptions

and the need to relate distances and dissimilarities by

some "fixed" formula. Only a rank-ordering of the distances

is required with this procedure. The criterion of goodness

of fit used in _his nonmetric solution is a normalized

"residual sums of squares" term, obtained after a monotone

regression of distance upon dissimilarity is performed

(Kruskal, 1964a; 1964b). This term is refered to as stress.

Solutions are attempted in anynumber_ of'dimehsions in the

range of 1 to _. The Smaller the stress_ the better the solution.

The data were collected using a procedure comparable

to the successive intervals procedure discussed in Torgerson

(1958) and by Diederich, Messick and Tucker (1957). Subjects

were asked to arrange the ordered set of n(n-l)/2 stimulus

pairs into seven categories on a distance continuum of

similarity. Stimulus pairs which were statistically sim-

ilar were also included in order that the rating data

could be transformed into similarities required for the

nonmetric solution. The transformed data for the nonmetric

solution was made by first determining the median scale

value assigned by each subject to the eight stimulus pairs

!
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which were statistically similar. The median score's were

then averaged across subjects. The responses to statist-

ically different stimulus pairs were compared to this

average similarity rating. If the scale value assigned to

a pair of stimuli was less than or equal to the average

similarity score, the response was scored as a "similar"

response. The data were then arranged in the form of a

similarity matrix, Where the off-diagonal elements represent

statistically different stimulus pairs. The proportion of

times a stimulus pair was scored as "similar" was entered

into the data matrix for the nonmetric solution.

The overall reliability of the data was estimated by

a method suggested by Root (1962). This procedure was

used to assess the reliability of the data for each group

of subjects. A replication for each'_racticed" subject

was considered to be a separate "individual" for that group.

The subjects were randomly divided into two groups having

an equal number of individuals and for the two groups

taken separately, the frequency with which each category

was used for each stimulus pair was determined. Median

stimulus ratings were then calculated for each of the

resulting frequency distributions for the two groups. A

Pearson product-moment correlation was computed to determine

the degree of agreement between the medians of the stimulus

I

I
I

I
I
I

I

I
I

I
I
I

I
I
I
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I
I
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pairs. The reliabilities calculated in this manner were

= .78 and _ = .80 for the practiced and unpracticed groups

respectively.

"Practiced" Group: Classical Scaling Solution Following

the procedure outlined by Diederich, Messick and Tucker

(1957), a matrix of relative interpoint distances was ob-

tained. The relative inter-stimulus distances were then

transformed into absolute distances following a procedure

outlined by Messick and Ableson (1956) to estimate an add-

itive constant. The value of c was 1.95. A matrix of

scalar products was obtained and factored by the principal

axes method. The first four principal components were

retained for subsequent analysis. The selection of the

principal components was determined by the sharp break in

the eigenvalues observed after extracting the first four

factors. The first four factors account for 95_ of the

variance. These four factors were then rotated to maximum

variance, using Kaiser's (1958) Varimax method. A test

for overall goodness of fit of the data to the scaling

model was performed. Torgerson (1958) shows the relation-

Ship of the absolute inter-stimulus distances to the factor

loadings as

I



Table 4

6O

Relative and Absolute Inter-stimulus Distances*

(Practiced Subjects)

1 2 3 4 5 6 7 8

1 0.000 .585 -0.717 .122 .896 -0.001 -0.005 -0.138

2 2.533 0.000 .063 .499 .754 .493 .328 .386

3 1.231 2.010 0.000 .218 .207 .055 .206 -0.109

4 2.070 2.446 2.166 0.000 -0.143 .159 -0.498 -0.327

5 2.844 2.702 2.155 1.805 0.000 1.041 -0.115 -1.320

6 1.947 2.440 2.003 2.106 2.989 0.000 1.030 .063

7 1.943 2.276 2.154 1.450 1.833 2.979 0.000 .213

8 1.810 2.334 1.839 1.621 .816 2.010 2.161 0.000

* The upper half contains relative interpoint distances and

the lower half of the matrix contains absolute distances.

The additive constant = 1.95. Stimuli 1 - 4 are dot patterns,

ordered by increasing variance, and stimuli 5 - 8 are shape

patterns, ordered in a similar fashion.

I
I

I
I
I

I
I
I
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I Factor Matrix: Classical Solution (Practiced Subjects)

I

I
I

I

I

FACTOR

Stimulus I II III IV V VI

Eigenvalue 6.438 3.866 3.356 2.493 .770 .105

Variance .378 .228 .197 .146 .045 .006

Cummulative .378 .606 .803 .944 .994 1.000

Dots 7.5 (i) .845 -0.059 1.044 -0.354

9.0 (2) .433 1.355 -0.982 .ll0

13.5 (3) .549 .165 .146 -0.878

18.0 (4) -0.469 -0.282 .277

"+" 7.5 (5) -1.474 -0.437 -0.481

9.0 (6) 1.386 -0.743 -0.410

13.5 (7) -0.877 .774 .804

18.0 (8) -0.393 -0.773 -0.398

.374 .048

.175 .053

-0.549 .048

.966 -0.235 .192

-0.387 -0.138 -0.065

.551 -0.116 -0.160

.312 .038 -0.168

-0.320 .477 .051

I

I
Table 6

Rotated Factor Matrix:

I
Classical Solution (Practiced Subjects)

FACTOR

I
I

I
I

S t imulus I I I I I I IV

(i) .084 -0.771 .987 -0.596

(2) .013 1.673 .346 -0.286

(3) .074 -0.091 .232 -1.026

(4) -0.131 -0.266 .032 1.105

(5) -0. 619 -0. 123 -i. 516 .220

(6) 1.634 -0.059 .502 .145

(7) -1.334 -0.026 .322 .475

(8) .280 -0.336 -0.905 -0.036

I

I
I

I
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A Pearson product-moment correlation between the ab-

solute distances, dij, and the derived distances, _ij' was

computed. The correlation coefficient was .97, indicating

a rather good fit of the data to the model.

The tentative names given to the four factors retained

for interpretation, are as follows.

i) Local property of shape

2) Structure of dot density

3) Structure over both local properties

4) Local property of dot density.

Interpretation of these dimensions is reserved for the

next Chapter.

"Practiced Grou_': Nonmetric Scaling Solution The ratings

for the set of stimulus pairs were converted to similarity

scores using the procedure described earlier. In order

that the so called "absolute" similarity scores would not

contribute to the stress, the diagonal entries were elim-

inated and treated as missing data. This procedure appeared

appropriate, since it was of interest to compare the non-

metric solution with the classical solution, which has no

provision for using data comparable to the diagonal entries

I

I
I

I

I
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of the similarity matrix. A computer program written by

J. B. Kruskal was used to perform the analysis. The curve

fitting technique used in this program is refered to as

the "method of steepest descent," or the "method of grad-

ients." This method is cited by Kruskal (1964b) as a

popular one in numerical analysis for minimizing a function

of several variables. An arbitrary configuration in a given

number of dimensions is chosen. The configuration is improv-

ed (to achieve a criterion of monotonicity) by determining

in which direction the configuration space is moving most

quickly, and moving the configuration a short step in that

direction. The configuration is moved about until no im-

provement is possible. For a further explanation of this

technique, the reader is refered to Kruskal (1964b).

A total of 23 iterations were required to achieve a

satisfactory stress of .033. According to Kruskal, this

is classified as a good-to-excellent fit of the data to the

model. Using a space of four dimensions resulted in the

lowest stress.

The four orthogonal factors were rotated to maximum

variance using a Varimax rotation. The overall factor

structure that was achieved was quite similar to the one

obtained using the classical solution. Interpreting the

factors obtained in a nonmetric solution, however, must be

I
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Nonmetric Scaling Solution: Practiced Subjects
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I

I

I
(Configuration Achieved After 23 Iterations)

Stimulus

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

DIMENSION

I II III IV

-0.036 .629 -0.847 -0.071

-0.318 .395 -0.031 .401

-0.172 -0.372 1.171 -0.084

.065 .227 .228 1.270

.358 .341 .015 -0.224

.382 -0.606 -0.108 .060

-0.264 -0.845 -0.658 -0.417

-0.016 .230 .230 -0.935

I

I

I

I

Table 8

Rotated Configuration: Nonmetric Solution

(Practiced Subjects)

Stimulus

(i)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

DIMENSION

I II III IV

.116 .303 -i.003 -0.074

-0.039 .523 -0.130 .355

-0.002 .070 1.237 -0.107

.132 .277 .147 1.267

.495 -0.011 -0.137 -0.176

-0.127 -0.704 .072 .iii

-0.860 -0.596 -0.310 -0.446

.286 .137 .126 -0.930

I

I
I

I

I

I
I
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done with reference to the ordinal, rather than the interval

properties of the resulting scale_ The tentative names

given to these factors are as follows.

I) Local property of shape

2) Contrast between local properties

3) Local property of dot density

4) Randomness over both local properties.

Interpretation of these factors is presented in Chapter IV.

Co "Unpracticed" Sample: Ciass±cal Scaling Solution The data

from the unpracticed group were arranged into the appropriate

form and a classical solution was computed. An initial

solution suggested that six factors were required to account

for all the variance, whereas five factors would account for

88_ of the variance. The resulting factor matrix was rotat-

ed to maximum variance. The factor structure obtained with

this solution was found to be uninterpretable. An attempt

was then made in five dimensions. The five factors which

were extracted with this solution accounted for 91_ of the

variance. The goodness of fit for the solution in five

dimensions was .84, whereas it was .99 in six dimensions.

However, the solution in five dimensions was more easily

interpretable. The tentative names given to the five

factors are:

I
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I

I

I

I
Relative and Absolute Inter-stimulus Distances*

(Unpracticed Subjects)

1 2 3 4 5 6 7 8

1 0.000 .366 -0.288 -1.009 .759 .677 .257 -0.617

2 4.218 0.000 .132 -0.156 .389 .605 .457 -0.451

3 3.563 3.983 0.000 .340 -0.843 .027 .354 -0.060

4 2.843 3.695 4.191 0.000 -1.898 -0.233 .051 -0.112

5 4.610 4.420 3.009 1.954 0.000 1.352 .194 -2.336

6 4.528 4.456 3.878 3.618 5.203 0.000 .892 .044

7 4.108 4.308 4.205 3.903 4.045 4.744 0.000 .317

8 3.235 3.310 3.791 3.739 1.516 3.895 4.168 0.000

I

I
I

I
* Relative distances appear above the main diagonal and

absolute distances are below the main diagonal. The add-

itive constant = 3.85.

I
I

I
I
I
I

I

I

I
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Table i0

Factor Matrix: Classical Solution (Unpracticed Subjects)

I FACTOR
S t imulus I I I III IV V VI

Eigenvalue 14.872 11.009 9.452 9.200 8.609 5.657

I Variance .253 .187 .161 .156 .146 .096
Cummul ative .253 .440 .601 .757 .903 .999

I (i) .614 -1.159 1.392 1.180 -1.497 -0.274
(2) .247 .354 -2.173 1.506 -0.175 .745

(3) .135 .641 -0.048 -1.651 -1.672 .840

I (4) -0.262 -0.240 1.298 .776 1.337 1.043
(5) -2.437 .831 .396 -0.568 .532 .158

(6) 2.763 1.041 .238 -0.666 1.016 -0.367

I (7) -0.203 -2.497 -0.931 -1.089 .639 -0.451
(8) -0.857 1.030 -0.172 .511 -0.181 -1.694

I
I
I

Table ii

Rotated Factor Matrix:

Classical Solution (Unpracticed Subjects)

I
I
I

I

Stimulus

(I)
(2)

(4)
(5)
(6)
(7)
(8)

FACTOR

I II III IV V

-0.138 .025 .283 2.677 .159

-0.032 .287 -2.662 -0.186 -0.015

.064 .244 .726 -0.003 -2.315

-0.010 .192 .766 .117 1.887

-1.878 .770 1.003 -1.486 .244

3.154 .231 .260 -0.423 .008

-0.459 -2.906 -0.039 -0.280 .037

-0.702 1.157 -0.336 -0.416 -0.007

|
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i) Shape and structure

2) Shape and randomness

3', Dot density and structure

4) Structure and local properties

5) Randomness of dots.

Interpretation of these factors is presented in the next

chapter.

68

"Unpracticed" Group: Nonmetric scaling solution Using the

procedure described previously for estimating similarity scores

from the ratings, which averages median "similarity responses"

across subjects as a basis for classifying other stimulus

pairs as being similar or dissimilar_ resulted in a relativ-

ely poor fit of the data to the nonmetric model. The stress

was .072. A different procedure was used to obtain similar-

ity scores for the "unpracticed" subjects, considerably

improving the fit and the interpretation of the resulting

stimulus space. Instead of averaging the median responses

of statistically similar stimulus pairs across subjects,

the median response of each subject was used to determine

his own similarity score. That is, the median rating for

statistically similar pairs for a given subject was obtained.

The ratings given to the statistically dissimilar pairs by that

!

I
!
I

I
!

I
I

l
l
l

I
i

i
I
!

i
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Table 12

Nonmetric Scaling Solution: Unpracticed Subjects

(Configuration Achieved After 6 Iterations)

69

I

I
I
I

DIMENSION

Stimulus I II III IV

(i) .074 .197 -0.054 -1.035

(2) -0.061 .805 -0.094 -0.035

(3) .085 -0.108 .797 .327

(4) .302 .288 .262 1.172

(5) -0.084 .215 -0.065 -1.133

(6) -0.107 -0.431 -0.012 -0.441

(7) .142 -0.201 -0.559 .188

(8) -0. 350 -0. 766 -0. 275 .957

I

! Table 13

I
Rotated Configuration: Nonmetric So]11+_on

(Unpracticed Subjects)

I

I
I

I

DIMENSION

Stimulus I II IIi iV

(i) -0.017 .003 -0.026 -1.057

(2) -0.062 .790 -0.003 -0.182

(3) .209 -0.126 .760 .353

(4) .434 .469 .232 1.075

(5) -0.183 .006 -0.014 -1.144

(6) -0.151 -0. 501 -0.035 -0.342

(7) .083 -0. 107 -0. 593 .196

(8) -0. 313 -0. 534 -0. 322 i. 102

I

I
I
I
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subject were compared to his median, and scored as being

similar if greater than or equal to the median. In this

manner, similarity relative to a subject's own estimate

of similarity for statistically similar pairs was determined.

A space of four dimensions resulted in the lowest stress

for the unpracticed group. A total of six iterations were

required to achieve a satisfactory stress of .04. The four

factors were tentatively named as follows.

i) Randomness across local properties

2) Local properties and structuredness

3) Contrast between local properties

4) Structuredness.

Interpretation of these factors is presented in the next

chapter.

It will be noted that for the practiced subjects, the

overall, or averaged, similarity measure which provided a

cutting score for scoring statistically different pairs

resulted in comparable solutions when the classical and

nonmetric procedures were used. The within-subjects scor-

ing procedure derived for the unpracticed group was also

tried on the practiced group_ The solution achieved with

the nonmetric technique had considerably higher stress

(poorer fit of the model) and yielded a very different

factor structure from both the classical solution and the

I

I

I

I

I

I

I

I

I
I

I
I

I
I
I
i

I
I



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

nonmetric solution using an averaged median to develop a

cutting score.

71



CHAPTER IV

DISCUSSION AND CONCLUSIONS

The present study has shown that the variation of

structuredness of the displays used had systematic effects

on performance for both the detection and scaling tasks.

Discussion6of the findings of the detection and scaling

studies are presented in separate sections.

i. Detection Study

When the results were presented, in Chapter III, an

attempt was made to relate performance measures to variations

in the structuredness of the stimulus displays_ These

variations of the structuredness had systematic effects on

response latency. As the structure in the displays increas-

ed, as indicated by a monotonic decrease in the variances

of the distributions, response latency showed a corresponding

decrease. This effect was consistently observed when the

combined data were broken down in terms of the different

independent variables over Which they had been averaged.

In the case of the accuracy data, on the other hand, only

when these data were combined across the different local

property, visual angle and duration of exposure conditions,

72
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could peformance be related to the variance or structure

o5 the displays. The averaged data suggested that as the

degree of structure in the displays increased, so did sub-

jects' ability to detect similarities and dissimilarities

between pairs. However, this relationship did not hold when

the data were broken down by the values of the independent

variables.

Plotting the combined percent correct scores against

the combined latency scores for stimulus pairs having sim-

ilar distributions as well as for stimulus pairs having

different distributions, suggested that an increase in

response accuracy was linearly associated with a decrease

in response latency. An attempt was made to compare these

results with those reported by Pickett (1964), who used

somewhat different dependent measures of accuracy and

response latency. He reported significant negative correl-

ations between grand mean latency and "ogive sigma;" the

latter is his measure of response accuracy. However, since

the response accuracy data, when plotted against structured-

ness of the displays, showed different functions for the

different values of the independent variables employed in

this study, it was decided not to use the averaged data

points to assess the strength of the relationship between

the two dependent variables. Instead, the data points were

I
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broken down in terms of the independent variables. This

yielded product-moment correlations which were not signif-

icantly different from zero. The lack of linear relationship

was attributed to variability rather than to a curvilinear

relationship. This indicated that response accuracy was

not reliably predictable from response latency, and vice

versa.

In summary, the following conclusions are suggested.

(i) When subjects were asked to detect either similar-

ities or dissimilarities between the distributions of the

elements of pairs of textured displays, the detection time

decreased as the structure for the more structured display

of the pair increased.

(2) Response latency was not linearly related to response

accuracy as measured by the percent of correct responses to

stimulus pairs having statistically similar or dissimilar

distributions.

(3) Response accuracy increased as the structure of

the pairs increased when the data were averaged over the

independent variables.

These conclusions suggest that a scale of decision time

and averaged response accuracy are related to the degree

of structure contained in the stimulus displays.

I
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Effects of Independent Variables It was hypothesized

that detection of similarities and differences in the dist-

ributions of the elements of the displays would differ for

the two local properties chosen for study. The visual angle

subtended by the local neighborhoods in the displays was

also manipulated as an independent variable. It was felt

that dot density could conceivably be perceived as a gray-

shade by subjects at small visual angle, but that the shape

local property would not be perceived differently, as the

range of visual angles chosen would always allow subjects to

be able to resolve the shapes. It was further assumed that

subjects' estimations of the statistics of dot density might

involve counting. This would be reflected by either a low

degree of response accuracy when not given adequate time

to make a decision, or an increase in decision time when

given more time to view the stimulus. When subjects could

view the displays for longer periods of time, it was hoped

that they would be more accurate in their decisions. The

data do support some of these hypotheses.

Subjects were more accurate in their responses when

detecting similarities and differences in the case of the

shapes local property, than in the case of dot density.

The significant interaction between local properties and

visual angles shows that at small visual angle subjects are

I
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more accurate at the detection task with the dot density

local property, than at large visual angle. At small visual

angle, accuracy of detection was quite similar for both local

properties. The data also showed that subjects did as well at

the detection task with the shapes at both visual angles.

These facts tend to support the notion that subjects may

be fusing the dots into a grayshade at small visual angle.

The response latency data showed that subjects take

longer at the detection task when given more time to view

the stimulus display. However, as predicted, this increase

in decision time was not offset by an increase in accuracy.

Whether or not subjects were attempting to count dots to

facilitate the detection process, was not determinable

from the data. One would have expected subjects to have

shown increased accuracy and response latency with an

increase in stimulus viewing time for the dot patterns,

but not necessarily for the shapes displays, had the sub-

jects been counting. This would have been an indication

that subjects could benefit, in terms of accuracy of response,

from viewing the displays for a longer period of time, but

at the expense of decision time. These effects, however,

were not observed.

The fact that subjects did respond less accurately to

the dot patterns at large visual angle is another possible
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indication that they were counting. Studies on estimation

of numerosity have shown that accuracy of estimating stim-

ulus number drops off sharply above six elements (Taves, 1941;

Kaufman, 1949; Jensen, Reese and Reese, 1950). The displays

used in this study had an average of nine elements per local

neighborhood. It may well be that above six elements_

groupings of elements begin to take on a textured appearence,

so that these groups have different perceptual properties

than the more easily countable smaller groups. A counting

strategy, then, may be more compatible with displays having

lower mean density of stimulus elements than were used in

this study. In order to test the credibility of a counting

hypothesis, further studies could be conducted, manipulating

mean density as an independent variable. It would also be

of interest to manipulate the number of local neighborhoods

in the display, as subjects' ability to keep track of counts

might vary With matrix size.

The data also showed that subjects were better detect-

ors of similarities than of differences between pairs of

stimulus displays. It should be noted that there were more

stimulus pairs Which were similar than were different, stat-

istically. However, not all the stimulus pairs which were

the same were exactly the same. For example, eight stimulus

pairs were exactly the same, in the sense that the same
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patterns appeared on both halves of the displays. Subjects

were able to correctly detect that they were the same with

nn accuracy of 90% or better. On the other hand, four pairs

of stimuli were statistically the same but had different

configurations of elements. Subjects were able to correctly

detect similarities 72_ of the time. It would appear that

the detection processes for these two types of similar

stimuli are different.

The fact that subjects had a higher percent of correct

detections for statistically similar stimu_ and that more

stimulus pairs were the same than different, suggests that

there may have been a bias for responding "same". Indeed,

it should be noted that all stimulus pairs were the same in

terms of local property, i.e. a display contained either a

pair of dots or a pair of shapes patterns, as well as being

the same with respect to mean density, while differing in

variance. It is possible that when the discrimination of

variance difference was difficult, the similarities in terms

of local property and mean density, may have biased the re-

sponse for "same" .

The following conclusions about the effects of manip-

ulating the different independent variables are suggested.

(i) Subjects were more accurate detectors of similar-

|
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ities than of differences in the variances of the distributions

of pairs of textured displays.

(2) Subjects were more accurate at the detection task

when shape, rather than dot density, was the local property

being manipulated.

(3) Although subjects were no more accurate at the de-

tection task when the visual angle was manipulated, the

results for the two local properties were more similar at

the smaller visual angle than at the larger visual angle.

(4) Subjects took a longer time to respond if given

more time to view the displays, but they were not necessarily

more accurate in their responses. Thus, response latency

seems to reflect a measure of observer strategy rather than

anything specific to the task itself.

2. Scaling Study

Two groups of subjects scaled the set of displays.

Classical and nonmetric solution were computed. Comparable

sets of dimensions resulted from these two solutions for

the practiced, but not for the unpracticed group of subjects.
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Interpretation of Dimensions: Practiced Group of Subjects

a) Classical Solution.

(1) Local property of shape. The first dimension

represents stimuli in which shape was the local property.

The positive end of the continuum is represented by patterns

having variances of 9.0 and 18.0 while the negative pole is

represented by stimuli having variances of 13.5 and 7.5.

It is interesting to note that stimuli which are most sim-

ilar in terms of their statistics lie on opposite ends of

the continuum from each other. This suggests that, along

this dimension, similarities between patterns of shapes

are determined by something other than their statistics.

(2) Structure o__f dot density. The second dimension

is primarily determined by dot density patterns of high

structure (low variance). The two most structured dot

patterns lie furthest from one another on opposite poles

of the continuum. It should also be noted that the dot

pattern having the second lowest variance had the largest

value on the dimension and that it lies at the opposite

end of the continuum from all other stimuli represented

by this dimension. It is also noted that this pattern had

the greatest proportion of correct detections associated
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with it when subjects were shown a pair of patterns both

having this distribution.

(3) Structure over both local properties. Dimension

III appears to be one of low variance (high structuredness)

across local properties. Thus, one pole of this dimension

is defined by a high value on the most structured dot pattern,

and the other by the most structured shape pattern. It seems

as if subjects were contrasting local properties on a low

variance basis. However, only the high variance shape pat-

tern lies on the same pole with the low variance shape

pattern. Thus, one pole of this factor is determined by a

grouping of high and low variance patterns of the same local

property, which is contrasted with other patterns in the

stimulus set, particularly the low variance pattern of the

other local property.

(4) Local property o__fdot density. The fourth di-

mension appears to be one of the dot density local property,

and both ends of the continuum are defined by the structured

dot patterns.

b) Nonmetric solution.

(i) Local property o__fshape. The first dimension ob-

tained was a shape local property dimension. The rank
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ordering of the magnitude of the loadings of this dimension

for patterns containing shapes differs somewhat from the

comparable Dimension I obtained with the classical solution.

The same stimuli, however, define this dimension in both

cases.

(2) Contrasts between local properties. In the second

dimension dots and shapes lie on opposite ends of the con-

tinuum. The ends of the continuum are defined by patterns

of the same variance; namely, again the second lowest

variance pattern. Different local properties having the

same variance are seen as being most different from each

other on this dimension. Perceptual differences on this

dimension seem to be influenced more by differences in local

properties than in their statistics.

(3) Local property of dot density. Dimension III

is primarily a dot density dimension. The ends of the

continuum are determined by the dot pattern having the

lowest variance and by the dot pattern having the second

highest variance. A pattern containing shapes also loads

relatively high on this dimension. The dot density dimen-

sion identified by the classical solution (Dimension IV)

also had this same pattern containing shapes loading high.

(4) Randomness over both local properties. Dimension
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IV is similar to Dimension III of the classical solution.

Dot patterns appear on one end of the continuum, and patterns

containing shapes on the other end. Both ends of the conti-

nuum are determined by patterns of the greatest variance.

Interpretation o__fDimensions:

a) Classical solution.

Unpracticed Group.

(i) Shape and structure, an___d (2) shape an___drandomness.

Dimension I and II are both shape local property dimensions.

Dimension I is determined by the two low variance shape

patterns loading on opposite ends of the continuum. The

second dimension, on the other hand, is determined by high

loadings for the two high variance shape patterns, which

appear at opposite ends of the continuum. A plot of these

two dimensions reveals that the dot density patterns cluster

about the origin, while the patterns containing shapes lie

at the far ends of the continua. It would appear that

subjects were able to perceive differences in the statistics

of the patterns containing shapes in this two-space.

(3) Dot density an___ddstructure. The third dimension is

primarily a dot density dimension, though the high variance

shape pattern also loads heavily. Of particular interest is

i
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the fact that the dot pattern having the second highest

structure had again the greatest loading and lies on the

opposite end of the continuum from all other stimuli which

loaded on this dimension. In this respect, this dimension

was quite similar to the second dimension obtained with the

practiced subjects.

(4) Structure and local properties. Dimension IV is

determined by low variance patterns representing both local

properties. Dot patterns tend to cluster at one end of the

continuum, while patterns containing shapes are located at

the other end.

(5) Randomness of dot density. The fifth dimension is

a high variance dot density dimension. The two high variance

dot patterns lie on opposite ends of this continuum.

b) Nonmetric solution.

While the classical scaling of the data from the un-

practiced group tended to emphasize dimensions which showed

differences in the distributions of the patterns within a

given local property, the nonmetric solution tended to show

that subjects could compare different local properties along

the same dimension. The dimensional structure obtained in

the nonmetric solution suggests that in some instances,
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observers can ignore the fact that the distributions are

composed of local neighborhoods having different local prop-

erties. On Dimension IV, a monotonic ordering of the patterns

of both local properties occurred strictly in terms of the

variances. In this instance, the mathematical and perceived

characteristics of the statistics of the local properties

lined up in a parallel manner. The following is a descrip-

tion of the dimensions obtained.

(i) Randomness across local properties. Dimension I

is characterized by the two highest variance patterns of

each local property defining the two ends of the continuum.

It would appear to be a dimension which contrasts local

properties of high variance patterns.

(2) Local properties and structuredness. The second

dimension contrasts the local properties in terms of their

statistics. Patterns having the highest and next to the

lowest variances define the poles of the continuum. As in

Dimension I, the patterns having the same local property,

but different variances, are on the same ends of the contin-

uum.

(3) Contrasts between local properties. Dimension III

is similar to Dimension I, in that different local properties

having the same variances define the ends of the continuum.

i
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In this case, the patterns are again those of the second

highest variance.

(4) Structuredness. Dimension IV shows patterns of

the same variances, but of different local properties,

tending to cluster with one another. Furthermore, the rank

ordering of the scale values derived for the patterns, has

a one-to-one relationship with the physical continuum of

variances used to construct the patterns.

The purpose of manipulating the variances of the

distributions of elements in the stimulus displays was to

relate perceptual judgements to a scale of structuredness.

It was decided to have subjects do the detection prior to

the scaling for two reasons. First, subjects would have

to be able to detect differences in the statistics of the

displays, before they could scale them. Secondly, the

effects of the different independent variables, e.g. visual

angle and duration of stimulus presentation, on detection,

had to be assessed. The results indicated that duration

of presentation had no significant effect on accuracy of

response. Visual angle, on the other hand, served to enhance

the differences between accuracy of detection for the two

local properties. Displays were presented to subjects for
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scaling at the large visual angle. If subjects are able to

respond to just the statistics of the displays, regardless

of the fact that these statistics may represent different

local properties, it seemed desirable to test this notion by

enhancing the differences between local properties as much

as possible. This is tantamount to asking the question,

"Is a scale of structuredness invariant for perceptually

different local properties of the stimulus?"

The scaling data from the group who participated in the

detection study shows that the statistics of the two local

properties could not be, for the most part, comparably

scaled along the same dimension. Only in Dimension II of

the nonmetric solution, "Contrasts between local properties,"

were both local properties scaled along the same dimension.

This dimension showed that subjects perceived displays having

the same distributions but with different local properties,

as being furthest apart. Rather than only responding to the

statistics of the displays, it appears that subjects per-

ceived the local properties themselves, regardless of their

statistical attributes, as being most different. In other

words, subjects tended to see displays of different statistical

make-up, but using the same local property, as being more

similar to one another than displays which used different

local properties but had the same distributions. When the

I
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practiced subjects did respond to the statistical attributes

of the displays, they did so only for a given local property

along a given dimension. No monotonic ordering of the

stimulus distances, in terms of a structured to random

continuum, was evidenced for this group of subjects.

Comparing the classical and nonmetric solutions for the

unpracticed group, the most obvious difference was that the

nonmetric solution tended to emphasize dimensions along

Which both local properties could be scaled together, whereas

the classical solution tended to emphasize dimensions of a

given local property. The nonmetric solution resulted in

a monotonic ordering for both local properties along a

continuum of structured to random. In this instance, a

similar scale of structuredness for both local properties

was evidenced in the data. The question arises as to why

one solution allows us to conclude that subjects were able

to order the stimuli for both local properties along a

monotone scale respresenting the variance of the distributions,

whereas the other solution does not. It is suggested that

a scale of structuredness, in terms of the variance of the

distributions, is only ordinal and can not be described

using an interval scale. If distance scaling can not be

performed by subjects, structuredness would not show up as
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a dimension with the classical solution. Structuredness

then, may not have been in the "interval space" of the

subjects.

This should not be taken to mean that the practiced

subjects could not scale structuredness, or that the class-

ical solution was completely insensitive to it. The non-

metric solution for the unpracticed group showed that

structuredness could be scaled in the same manner for both

local properties along the same continuum. The classical

solutions also showed that structuredness could be scaled,

but differently for the two local properties. The dimensions

indicate that subjects could scale differences in the variances

between patterns, as indicated by some dimensions representing

only structured patterns, others representing random patterns,

and still other dimensions contrasting structured and random

stimuli for a particular local property. It may be that the

two local properties could not be scaled with the same scale

values in an interval space, because the perceived structured-

ness continua for the two local properties are not linearly

related.

Differences between the solutions may also have been

due to the inappropriateness of the distance model used.

The nonmetric procedure allows, " ... the definition of

I
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stress ... to be used with almost any kind of distance

function at all " (Kruskal, 1964a). Solutions were attempt-

ed using the so-called "city block" or "Manhattan metric"

(Attneave, 1950) distances, as well as distance functions

generally known in mathematics as the "L -norms," or
P

Minkowski r-metrics (Kruskal, 1964a). Neither of these

solutions, however, were interpretable. Torgerson (1965)

comments on the appropriateness of the Euclidean model, as

opposed to the "city block" model, as follows. " ... the

Euclidean model goes with multidimensional attributes; the

additive (city block) model with sets of stimuli varying

on several different attributes." The stimuli used in this

study could be classified as h_ving multidimensional att-

ributes, rather than what Torgerson refers to as, "stimuli

varying on several attributes." That is, the different

dimensions along which subjects could classify stimuli were

not very obvious to the subject. It is felt, therefore,

that the Euclidean distances were most relevant for this

study, and that differences between the classical and non-

metric solutions are probably not due to the choice of an

improper distance model.

The results of the scaling can be summarized as follows.

(1) Unpracticed subjects were able to order struc-

turedness in a nonmetric space according to the variances
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of the distributions of elements in the displays, with

comparable scale values for the two local properties.

(2) Subjects were able to scale structuredness in

an interval space as either random or structured, including

both local properties along the same dimension, but with

different scale values for the structuredness of the two

local properties.

3. Scaling of detection data.

The detection data showed that subjects were better

detectors of similarities and dissimilarities for patterns

having +'s as the modal shape than for T's or dots, which

did not differ significantly in terms of percent of correct

detections.

To further investigate the difference between +'s and

the other local properties, it was decided to treat the per-

cent correct detection data as measures of experimental

dissimilarities, to relate the dissimilarity scores to inter-

stimulus distances, and to map these distances into a multi-

dimensional space. The most appropriate method for this is

the Shepard-Kruskal nonmetric scaling procedure. Separate

solutions were obtained for each local property. The best

fit to the model for dots and T's was in a unidimensiona]

space, whereas two dimensions were required for a solution

!
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for the +'s. Plotting the scale values derived from the

nonmetric solutions against the variance of the stimuli in-

dicated that subjects were able to order the stimuli in terms

of variance, though subjects could only order the +'s along

a (monotonic) variance continuum in two dimensions, with a

positive slope for one dimension and a negative slope for

the other. The plots appear in Appendix II. This suggests

that +'s are more complex perceptually than either dots or

T's. In light of these scales, it is not surprising that the

scaling study tended to show strong local property dimensions

which were relatively homogeneous with respect to patterns of

a given local property. The choice of +'s, which were

perceptually different from T's and dots, to be contrasted

with dots in the scaling study, made it more likely that

different local property dimensions would be found. Had

T's and dots been used, instead of +'s and dots, the stimulus

space might have been quite different.

4. Implications for future research

Scaling the stimuli at large visual angle resulted in

subjects being able to order structuredness of two local

properties in a similar fashion along the same dimension,

in an interval space. However, at this large visual angle

the detection study suggested that perhaps a different

perceptual process was involved in the case of the dot

l
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density local property. This may be an indication that

structuredness, as a psychological attribute of the displays,

is different for luminance than for dot numerosity. Since

the detection results at the smaller visual angle were

slmilar for both local properties, perhaps a scaling study

at small visual angles would result in a multidimensional

space showing that structuredness is scaled in a similar

fashion for these local properties. It is felt that if the

local properties are too different perceptually, as the

detection data suggested they were at large visual angle_

these differences were too great to ignore to allow subjects

to scale the statistics of the two local properties in a

comparable fashion. Future research should allow manipu-

lating visual angle, in a scaling situation, as an indepen-

dent variable to see if scales for structuredness of dot

numerosity (or grayshadedness) and shape are comparable at

smaller visual angles.

The scaling data for the two groups resulted in dif-

ferent dimensions for the perception of structuredness. The

detection data did provide some information as to why the

practiced group of subjects had difficulty scaling the two

local properties in a similar fashion. Whether or not one

group's participation in the detection study, and the other

group's not having received additional practice in judging

textured displays, can account for the differences in the
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scaling data, was not determinable from the study. It is

interesting to speculate, however, that the practiced group

had been "trained" to respond to the statistics of the

distributions of pairs of patterns which involved the same

local property. Combining different local properties with-

in the same display, for this group, may have been quite

confusing when making the transition to the scaling task.

Assuming that they had established some criterion for asses-

sing the sameness or differentness of pairs of displays

using the same local property, as in the detection study,

this criterion, if it was used in the scaling, may not

have permitted the combining of different local properties,

within the same frame of reference, in the decision struc-

ture.

This criterion problem is another possibility for

luture research. Although the criterion problem has

traditionally been thought of as a problem for signal

detection in threshold experiments, it is felt it may be

possible to use instructional set, combined with knowledge

of results, to manipulate the subject's criterion. In this

way, the effects of the criterion in a scaling situation

could possibly be studied. This approach would combine

signal detection techniques and the psychometrically

powerful multidimensional scaling techniques.
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In conclusion, it is felt that this study has been

effective in disclosing some of the effects of the various

independent variables on the detection of similarities and

differences of the variances of the distributions of two

local properties. It has also suggested under what circum-

stances different local properties can be comparably scaled

in a multidimensional space.



CHAPTER V

SUMMARY

This research was concerned with the perception of

visual texture. A pattern is said to be textured when it

is composed of a large number of simple patterns. The

extent to which the simple patterns differ from one another

and the manner in which they are spaced within the overall

pattern, determine the textured quality of the pattern.

In this study, textured patterns were generated by

controlling the statistics of a given local property of the

simple patterns. The "structuredness" of a textured pattern

was determined by the variance of the distribution of

values for the local property. The high variance patterns

are referred to as random and the low variance patterns

are referred to as structured.

Two local properties were used in this study: number

of dots and shape. In the first case, the simple patterns

were clusters of dots; in the second case, they were shapes

formed by two perpendicular line segments. A display

consisted of a pair of textured patterns, each of which was

a i0 X i0 matrix of simple patterns. The visual angle sub-

tended by the displays, and the duration of presentation of

the display, were manipulated as independent variables,
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as it was felt that these variables would have a differential

effect on the perception of the statistics of the textured

patterns for the two local properties.

The experiments consisted of two parts, a detection

study and a scaling study. Five subjects participated in

the detection study. The task was to detect similarities

and differences between the pairs of simultaneously pre-

sented textured patterns. Percent of correct detections

and latency of response were used as dependent measures.

The results of the detection study indicated that (a)

as the patterns increased in randomness, subjects took a

longer amount of time to respond; (b) accuracy of response

could not consistently be related to a scale of structured-

ness for different local properties; (c) response accuracy

and latency were not found to linearly related (the lack of

linear relationship was attributed to variability); (d)

subjects were more accurate detectors of similarities than

of differences in the statistics of the displays; (e)

accuracy of detection was better for shape than for dot

density, and subjects were better at the detection task

for the dots at the small visual angle, whereas no

difference in accuracy was evidenced for shapes at the two

visual angles; (f) subjects were no more accurate at the

detection task when given longer amounts of time to view

I
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the displays; and (g) response latency was found to be

sensitive only to duration of stimulus presentation--the

longer subjects were allowed to view the displays, the longer

they took to respond.

A second set of displays was generated at the larger

visual angle, in order that subjects could scale similarities

of the pairs of stimuli. In addition to the original sub-

jects, a second group of 17 subjects scaled the patterns on

a 1 to 7 scale of similarity. Solutions using the classical

(Torgerson, 1958) and nonmetric (Kruskal, 1964) models,

were computed. Four comparable dimensions emerged in both

solutions for the practiced group of subjects. Comparable

scales of structuredness, in terms of the distributions in

the displays, were not observed in either solution. Five

dimensions emerged for the unpracticed group of subjects,

with the classical scaling solution and four dimensions

were derived from the nonmetric solution. A monotonic

ordering of the variances of the distributions, with com-

parable scale values for the two local properties, occurred

with the nonmetric solution for the unpracticed group of

subjects.

These results are discussed with respect to the psych-

ological space of structuredness, and the consequences of

scaling perceptually different local properties in the same

multidimensional space.
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INSTRUCTIONS TO SUBJECTS: DETECTION STUDY

I am going to show you pairs of dot patterns. Before

doing this, however, let me explain how each pattern is

constructed. A pattern consists of i00 groups of dots,

arranged i0 rows horizontally by i0 columns vertically.

A group may contain either 3, 6, 9, 12, or 15 dots. The

placement of the dots within a group is done in a random

fashion.

Each dot pattern you will see has an average of nine

dots per group and each pattern has approximately the same

number of dots. In some patterns there will be a greater

proportion of groupings having nine dots than groupings

having either 3, 6, 12, or 15 dots. For example, a pattern

may contain 40 groupings of nine dots and 15 groupings each

of 3, 6, 12, and 15 dots. Other patterns will have each

type of grouping occurring approximately equally often.

This study is being conducted to investigate the

characteristic features used by observers to discriminate

differences between pairs of dot patterns which may differ

with respect to the relative frequencies of the different

types of dot groupings. In this experiment, you will be

shown pairs of these dot patterns. You must judge the

i01
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degree of similarity of the two patterns as regards the

relative frequencies of the 3, 6, 9, 12, and 15 dot group-

ings. Respond by depressing button number one if you feel

the pair of patterns are, on the whole, similar, and depress

button number two if you feel the pair of patterns are, on

the whole, dissimilar. Please depress the appropriate

button as soon as you make your decisions. In making a

decision, you are not asked to count the dots within the

groupings, but should make an over-all judgement about the

pair of patterns.

You will have control of the presentation of the pat-

terns. Place your head firmly on the chin rest and your

eyes in front of the apertures. You will notice a small

dot in the center of the display field. (When you depress

the red button, the mechanism which will present the patterns

becomes activated.) Begin to fixate on the dot as soon as

you depress the red button; in about a second a pair of

patterns will appear for a short period of time. As soon

as you decide upon the appropriate response, depress the

appropriate button. Any questions?

I am now going to Show you a different type of dot

pattern. Again, the patterns consist of pairs of i0 row

by ten column groups of dots, but instead of arranging the
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dots randomly within a group, each group will contain only

nine dots arranged in one of the following five ways:

103

(Present examples.)

i

1

i

I

i

I

I

I

I

I
I

Instead of varying the relative frequencies of dot

number per group, the relative frequencies of the five

figures will vary. Your task is to compare pairs of patterns

on the basis of the relative frequencies of the five figures.

You are to respond by depressing button number one if you

feel that the two patterns are, on the whole, similar, and

depress button number two if you feel that they are, on

the whole, dissimilar. In making either a similar or dis-

similar judgement, you are not asked to count the number

of times the different figures appear, but you should ind-

icate an over-all judgement of the pairs of patterns. Any

questions?
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INSTRUCTIONS TO SUBJECTS: SCALING STUDY

This study is being conducted to investigate the

characteristic features used by observers to discriminate

and classify abstract visual patterns. The patterns are

made up of i00 elements, arranged as a matrix having i0

rows and i0 columns.

One series of patterns contains groupings of dots as

the basic elements, Where a group may contain either 3, 6,

9, 12, or 15 dots. The placement of the dots within a

group is done in a random fashion. Each dot pattern has

approximately the same number of dots. In some patterns

there will be a greater proportion of groupings having nine

dots than groupings having either 3, 6, 12, or 15 dots.

For example, a pattern may contain 40 groupings of nine dots

and 15 groupings each of 3, 6, 12, and 15 dots. Other

patterns will have each type of grouping occurring approx-

imately equally often.

A second series of patterns consists of groupings o_

dots arranged in the following five ways:

(Present example.)

Instead of varying the relative frequencies of th_

number of dots per group, the relative frequencies of the

|
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five figures formed by the dots will vary. In some of the

patterns, some of the figures occur more frequently than

others. For example, in one pattern, one figure may occur

nearly all the time; in another pattern, all five figures

may occur equally often.

The task involves a comparison of a pair of these

patterns. A pair may consist of two dot patterns, two

patterns containing figures, or a dot pattern and a pattern

containing figures. You are asked to judge how similar

the two patterns are, as regards how often each dot group-

ing occurs in each of the two patterns when both patterns

contain dots; how often each figure occurs in each of the

two patterns when both patterns contain figures; and how

often each dot grouping, as compared to how often each figure

occurs when the patterns contain both dots and figures.

The judgements will be indicated on a _ to _ scale, where

means very similar and ! means least similar. The other

numbers in between these two points reflect intermediate

degrees of similarity. You are no___t asked to count the

different dot groupings or figures, but to make an over-all

judgement of the pairs of patterns.
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Sample "Shapes" Patterns
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S,ample Do____tDensity Patterns
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